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ABSTRACT

This report forms the user’s guide for Version 3.2 of QPSOL, a sct of Fortran subroutines designed
to locate the minimum value of a quadratic function subjcel to linear constraints and simple upper
and lower bounds. If the quadratic function is convex, a global minimum is found; otherwise, a
local minimum is found. The method used is most ellicient when many constraints or bounds are
aclive at the solution. QI’SOL treats the Llessian and gencral constraints as dense matrices, and
hence 18 not intended for large sparse problems.

This document replaces Lhe previous user’s guide of July 1083.

t QPSOL is available from the Office of Technology Licensing, 105 Encina Ilall, Stanford University,
Stanford, California, 94305.
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1. PURPOSE QPrSoL/1
h 1. PURPOSE
': QPSOL is a collcction of Fortran subroutines designed {o solve the quadratic programming
-~ (QP) problem -— the minimization of a quadratic function subject to a set of linear constraints
- on the variables. The problem is assumed to be stated in the following form:
P T 1 T
. QP minimize c¢'z+ -z°Hz
zER™ 2

z
subject to ¢ < {Az} < u,

_ where ¢ is a constant n-vector and H is a constant n X n symmetric matrix; note thal / is the
E Hessian matrix (matrix of sccond partial derivatives) of the quadratic objective function. The
matrix A4 is m X n, where m may be zcro; 4 is treated as a dense matrix.

The constraints involving A will be called the general constraints. Note Lhat upper and lower
bounds are specified for all Lthe variables and for all the general constraints. The form of QP
allows full generalily in specifying other types of constraints. In particular, an equality constraint
‘ is specified by sctting ¢ = u,. If certain bounds arc not present, the associated clements of ¢ or
. u can be sel Lo spccial values that will be treated as —oo or +00.

The user must supply an initial estimate of Lhe solution Lo QI?, and a subroutine that computes
the product I{z for any given veclor . Some typical examples of this subrouline are included

o with the QI’'SOL package. There is no restriction on /1 aparl from symmetry. If /] is posilive
definite or posilive semi-definite, QI’SOL. will obtain a global minimum; otherwise, the solution

obtained will be a local minimum (which may or may not be a global minimum). If /7 is defined

o as the zero matrix, QI’SOL will solve the resulting lincar programming (1.1°) problem; however,
- this can be accomplished more efliciently by setling a logical variable in the call of subroutine
- QPSOL (scc the parameter LP in Scclion 4), or by using the LI’SOL package.

e QI’SOL allows the user to provide the indices of the consiraints that arc believed to be
" salisficd exactly at the solution. This facility, known as a warm starl, can lead to significant
2 savings in computational effort when solving a sequence of related problems. For example, the
-~ NPSOL package of Gill ¢t al. (1984b) uscs this feature in a sequential quadratic programming
- method for nonlincarly constrained optimization.

.:::'. The quantity of output is controlied by the user (sce the parameter MSGLVL discussed in

Scction 4). The QI’SOL package contains approximately 6000 lincs of ANSI (1966) Standard
i‘; Fortran, of which 44% arc comments.
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:: QPSOL/2 2. DESCRIPTION
s <
- 2. DESCRIPTION ¥
_::E The method used to solve QP is an aclive-set null-space method, and is described in detail ';::
2N in Gill et al. (1984¢); a closcly related method is given in Gill and Murray (1978). The main
N features of the method are presented here. Where possible, explicit refercnce is made to the names )
l?ij of variables that arc parameters of subroutine QPSOL or are mentioned in the printed output.
2 The method has two distinct phases. In the first (the LP phase), an iterative procedure is
: carried out Lo determine a feasible point. In this conlext, feasibility is defined by a user-provided ,
array FEATOL; the j-th constraint is considered satisfied if its violation does not exceed FEATOL(5) -
. (sce the discussion of FEATOL in Scction 4.) The sccond phase (the QP phase) gencrates a sequence
,;.'_ of feasible iterates in order Lo minimize the quadratic objective function. In both phascs, a subset .
-"'.: of the constraints - called the working set -- is used to define Lhe scarch direction at each _
- iteration; typically, the working sct includes constraints that are satislicd “cxactly” (to within r-' '
the corresponding tolerances in Lthe FEATOL array). -
'.'_'-'. We now bricfly describe a typical iteration in the QP phase. Let z, denote the estimate of .
j:f'. the solution at the k-ih ileration; the next iterate is defined by :'::'
- : Tk+1 = Tk + QkPk, -
- 4
'."-j where pi is an n-dimensional scarch direction and a; is a scalar step longth. Assume that ' 2
: the working set contains & lincarly independent constraints, and let Cp denote the matrix of o
-j-_f cocllicients of the bounds and general constraints in the current working set. e
c Lel Zg denote a matrix whose columns form a basis for Lhe null space of Cy, so that Cp 7y = o | »
0. (Note that Zy has n, columns, where ny = n — t.) The veelor ZT(c + 11z,) is calicd the

projected gradient ab zi. If Lhe projecled gradient is zero al zi (i.c., zx is a constrained slationary e
'.:.{ point in the subspace defined by Zi), Lagrange multipliers Ax are defined as the solution of the .-',l'
compalible overdetermined system -

- CT\, =c + Hz,. (1) \

-_ The Lagrange multiplier A corresponding Lo an inequalily constraint in the working scl is said to

be optimal it X < 0 when the associated constraint is al its upper bound, or it X > 0 when the ...

- associated constraint is al its Jower bound. IT a multiplier is non-optimal, the objcctlive function .

can be reduced by deleting Lhe corresponding constraint (with index KDEL) from the working set. :::1 :
. If the projected gradient al zj is nonzero, the scarch dircction py is deflined as )

o . .

Y Pr = Zips) (2) 2
:r_ where p, is an n -veetor. In effect, the constraints in the working set are Lreated as equalities, by o

:’ constraining pi to lie within the subspace of vectors orthogonal to the rows of Ci. This definition R :::: :
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2. DESCRIPTION QPSOL/s

ensures that C,px = 0, and hence the values of the constraints in the working set are not altered
by any move along py.
\ The vector p; is obtained by solving the equations

, ZXHZp, = —ZF(c+ Hz,). (3)

(The matrix ZTH Z, is called the projected Hessian matrix.) If the projected Hessian is positive

[ definite, the veclor defined by (2) and (3) is the step to the minimum of the quadratic function
in the subspace defined by Zi.

If the projected Hessian is positive definite and i + py is feasible, ax will be taken as unity.

In this case, the projected gradient at z,,; will be scro (sce the variable NORM ZTG in the output

- - i

from QPSOL), and Lagrange mulliplicrs can be computed (sec (1)). Otherwise, ay is set to the
step lo the “ncarest” constraint (with index KADD), which is added Lo the working sct at the next
iteration.

The matrix Zi is obtained from the TQ faclorisation of Cy, in which Cy is rcpresented as

CQ=(0 Tu), (1)

where Ty is reverse-triangular (see Gill et al., 1984a). It follows from (4) Lthat Zx may be taken
as the first n, columns of Q. If the projected llessian is positive definite, (3) is solved using the

- Cholesky lactorization
’ 2Nz, = RIR,,

where IRy is upper trinngular. These factorizsations arc updated as conslraints enter or Icave the
_ working set. The updale procedures are described in detail in Gill et al. (1984a).
3 An important feature of QI’SOL is the treatiment of indeliniteness in the projeeted Tlessian.
p If the projecied llessian is positive definile, it mmay become indclinite only when a constraint is

delcted from the working set. In this case, a temporary modification (of magnitude HESS MOD) is
added Lo the last diagonal clement of Lthe Cholesky Factor. Once a modification has occurred, no
s further constraints are deleted from Lhe working set until cnough constraints have been added so

q that the projected llessian is again posilive definite. 1T problem QI has a finite solution, a move
> along the direction obtained by solving (3) with the modified Cholesky factor must encounter a
3 constraint that is not already in Lhe working set.

In order Lo resolve indefinitencss in this way, we must cnsure that the projected 1lessian is
posilive definite al the first iterate in the QI phase. Given the ny X n, projected Ilessian, a
step-wise Cholesky faclorization is performed with symunetric interchanges (and corresponding
rcarrangement of the columns of Z), terminating if the next step would cause the matrix to
become indefinite. This determines the largest possible positive-definite principal submatrix of
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QPSOL/4 2. DESCRIPTION

the (permuted) projected Hessian. If n, steps of the Cholesky factorization have been successfully
completed, the relevant projected Iessian is an ng X n, positive-delinitec matrix ZTH 7, where
7 compriscs the first ny columns of Z. The quadratic function will subscquently be minimized
within subspaces of reduced dimension until the [ull projected Hessian is positive dcfinite.

Several strategies are used to control ill-conditioning in the working set. One such strategy
is associated with the FEATOL array. Allowing the j-th constraint to be violaled by -as much as
FEATOL(5) oflen provides a choice of constraints that could be added to the working set. When
a choice exists, the decision is based on the conditioning of the working set. Negative steps are
occasionally permitted, since zx may violale the constraint to be added.




3. SPECIFICATION ' QPSOL/5

' 3. SPECIFICATION

SUBROUTINE QPSOL( ITMAX, MSGLVL, N,
NCLIN, NCTOTL, NROWA, NROWH, NCOLH,
' BIGBND, A, BL, BU, CVEC, FEATOL, HESS, QPHESS,
COLD, LP, ORTHOG, ISTATE, X,
INFORM, ITER, OBJ, CLAMDA,
IW, LENIW, W, LENW )

LOGICAL COLD, LP, ORTHOG

EXTERNAL QPHESS

INTEGER - ITMAX, MSGLVL, N, NCLIN, NCTOTL,
_ NROWA, NROWH, NCOLH, INFORM, ITER, LENIW, LENW
» INTEGER ISTATE(NCTOTL), IW(LENIW)
- REAL BIGBND, OBJ
REAL A(NROWA,N), BL(NCTOTL), BU(NCTOTL), CVEC(N),

FEATOL (NCTOTL), HESS(NROWH, NCOLH), X(N),

'l * CLAMDA(NCTOTL), W(LENW)
- Note: Ilere and clscewhere, the specification of a paramecler as REAL should be interpreted as
:: working precision, which may bc DOUBLE PRECISION in somc circumstances.
|
"
P
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QPSOL/8 4. INPUT PARAMETERS

_I ' 4. INPUT PARAMETERS

ITMAX is an upper bound on the number of iterations to be taken during the LP phase or the
. QP phase.

MSGLVL indicates the amount of intermediate output desired. The printout is deseribed in
Section 9. All output is written to the file number NOUT (see subroutinc MCHPAR in
Section 11). For MSGLVL > 10, each value of MSGLVL includes the output from all lower

= valucs. The printout corresponding to cach value of MSGLVL is dcfined as follows:
MSGLVL Definition

'.'_:; 0 No output.

i 1 The final solution only.

- 5 One bricf line of output for each constraint addition or dcletion (no
. printout of the final solution).

8 210 The final solution and one brief line of output for cach constraint
i addition or declction.

i > 15 At each iteration, X, ISTATE, and the indiccs of the free variables (i.c.,
o - the variables not currently held on a bound).

1::3 > 20 At cach ileration, the Lagrange multiplier cstimates and the general
. constraint values.

5 > 30 At cach iteration, the diagonal clements of the malrix T associated
L with the T'Q laclorization of the working sct, and the diagonal cle-

ments of the Cholesky factor R of the projected 1lessian.

NCLIN  is the number of genceral linear constraints in the problem (NCLIN may be xcro).

i‘ > 80 Dcbug printout.

‘-'::: 99 The arrays CVEC and HESS.

. N is the number of variables (i.c., the dimension of X ). N must be positive.
)

% NCTOTL must be sel to N+ NCLIN.
NROWA  is the declared row dimension of A (NROWA must be al least 1 and at lcast NCLIN).
R

NROWH  is the declared row dimcension of the array HESS (NROWH must be al least l).‘

e T Te T "o T8
P R I R

NCOLH  is the declared column dimension of the array HESS (NCOLH must be at least 1).
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] 4. INPUT PARAMETERS QPSOL/7
! BIGBND is a positive real variable whose magnitude denotes an “infinite” component of £ and
u. Any upper bound greater than or cqual to BIGBND will be regarded as plus infinity
- (and similarly for a lower bound less than or cqual to —BIGBND).
A is a real array of declared dimension (NROWA,N). The i-th row of A contains the cocfficients
- of the i-th general constraint, § = 1 to NCLIN. If NCLIN is zero, A is not accessed.
BL is a real array of dimension NCTOTL that contains the lower bounds for all the constraints,

CVEC

FEATOL

in the following order (which is also observed for BU, ISTATE, and CLAMDA): the first
N elements of BL contain the lower bounds on the variables; il NCLIN > 0, the next
NCLIN elements of BL contain the lower bounds for the gencral lincar constraints. In
order for the problem specification Lo be meaningful, it is required that BL(7) < BU(j)
for all j. To specily a non-cxistent lower bound (i.e., £; = —o0), the valuc used must
salisly BL(j) < —BIGBND. To specily the j-th constraint as an equalily, the nser must
sct BL(j) = BU(j) = B, say, where |3| < BIGBND.

is a real array ol dimension NCTOTL Lhat contains the upper bound * all the con-
straints, in the same order described above under BL. To specify a no Acentl upper
bound (i.e., u; = o00), the value used must satisly BU(j) > BIGBND.

is a rcal array of dimension N containing Lhe cocllicicuts of the lincar term of the
objective function (the vector ¢ in problem QP).

is a real array of dimension NCTOTL conlaining positive lolerances that define the
maximum permissible violation in cach constraint in order for a point Lo be considered
feasible, i.c. constraint j is considered satisfied il its violation does not excced FEATOL().
Nole that FEATOL(7) is a bound on the absolute acceplable violation. For example, if the
dala defining the constraints are of order unily and are correcl Lo aboul 6 decimal digits,
it would be appropriate to choosc FEATOL(j) as 10~° for all relevant j. In general, the
clements of FEATOL should be choscn as the largest possible aceeplable values, since the
algorithm of QI’SOL becomes less likely Lo encounter diflicullies with ill-conditioning
and degencracy as the components of FEATOL increase. A warning imessage is printed
if any component ol FEATOL is less than machine precision; the user musi not sct any
component of FEATOL to zcro. A detailed discussion of FEATOL is given in Gill ot al.
(1984c).

is a real array of declarcd dimension (NROWH, NCOLH) that may be uscd to store the
Hessian matrix 7 of problem QP il desired. The elements of HESS are accessed only by
the subroutine QPHESS; thus HESS is nol acecssed il LP is .TRUE. In some cascs, the user
need not usc HESS Lo store /] explicitly (sce the specification of QPHESS below).




QPrSoL/s ‘ 4. INPUT PARAMETERS

QPHESS is the namc of a subroutine that defines the Ilessian matrix. QPHESS must be declared as
EXTERNAL in the rouline that calls QPSOL. QPHESS is not accessed if the logical variable
LP is .TRUE. (sce the description below of LP). The user has considerable flexibility in
coding QPHESS bcecause the algorithm of QI’SOV. requires only the product of If and a
vector; Lhe clements of the matrix / need not be defined explicitly. Several examples of

et

QPHESS are provided in order to demonstrate some of the alternatives. The specification
of QPHESS is:

F SUBROUTINE QPHESS( N, NROWH, NCOLH, JTHCOL, HESS, X, HX )
v INTEGER N, NROWH, NCOLH, JTHCOL
REAL HESS(NROWH, NCOLH), X(N), HX(N).

The actual paramcters N, NROWH, NCOLH and HESS inpul to QPHESS will always be the
same I'ortran variables and arrays as those input Lo QPSOL. They must notl be altered
by QPHESS. -
For a given vector z (the array X), the array HX must contain the product 1z on
exit fromn QPHESS.
The inpul parameter JTHCOL is included to allow flexibility for the user in the

special situation when z is the j-th coordinate vectlor (i.e., the j-th column of the

lo!

idenlity malrix). ‘This may be of interest because the produet Iz is then the j-th
column of 11, which can someclimes be computed very elficiently. The user may code
QPHESS Lo Lake advanlage ol this case. If JTHCOL == j, where 7 > 0, HX should contain
colmnn JTHCOL of /1, and hence special eode may be included in QPHESS Lo test JTHCOL
il desired. Ilowever, special code is not necessary, since Lhe veetor X always contains |
column JTHCOL of the identity malrix whenever QPHESS is called with JTHCOL > 0.

In some cases, il may be desirable Lo use a one-dimensional array to transmitl data
or workspace to QPHESS; HESS should then be declared as REAL HESS(NROWH), and the

parameter NCOLH must be 1. (This device is used for the example subroutines QPHES4

and QPHESS in the QPSOL package, Lo cconomize on storage.) A
In other siluations, it may be desirable to compule Iz withoul accessing HESS— A
for example, il /T is sparsc or has special structure. (This is illustrated in the subroutine .
QPHES1 in Lhe QPSOL package.) The parameters HESS, NROWH and NCOLH may then refer ::;:
Lo any convenicnt array. = -
When MSGLVL = 99, the (possibly undcfined) contents of HESS will be printed, 5 ..j-‘.j
except il NROWH and NCOLH are both 1. Also printed are the results of calling QPHESS ! "'.:.-:'.:
with JTHCOL = 1,2,...,N, | 1
COLD is a logical variable that indicates whether the user wishes to specify the initial working - =,
sct. In general, COLD should be se! to .TRUE. for the first call of QPSOL, and the .. '_:::T_:‘
initial working set will then be scleeted by QPSOL. Tlowever, if a good estimate of the -::: j;‘:.;‘.‘
AR
2
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4. IN'UT PARAMETERS QPSOL/9

.i initial working set is available — for example, when QPSOL is called repeatedly to solve
' related problems -— it may be advantageous to set COLD to .FALSE. after the first
call. When COLD is .FALSE., the uscr must define every element of ISTATE (sec the
- description of ISTATE for the meaning of cach possible valuc). QPSOL will override the
= user’s specificalion of ISTATE if necessary, so that a poor choice of the working set will
‘ not cause a fatal error.

LP is a logical variable. If LP is .FALSE., QPSOL will solve the specified quadratic program-
ming problem. If LP is .TRUE., QPSOL will trcat H as zero and solve Lhe resulting linear
program; in this case, paramecters HESS and QPHESS will not be accessed.

ORTHOG is a logical variable that indicates whether orthogonal transformations are to be used
in computing and updating the TQ [actorization of the working set

AQ = (0 T)’

where A is a submatrix of 4 and T is reverse-triangular. If ORTHOG is .TRUE., the TQ
Tactorization is computed using llouscholder reflections and plane rotations, and the
I matrix @ is orthogonal. Il ORTHOG is .FALSE., stabilized clementary transformations are
uscd to maintain the factorization, and @ is not orthogonal. A rule of thurb in making
the choice is that orthogonal Lransformations require more work, but provide greater
numerical stability. Thus, we recornmend setling ORTHOG Lo .TRUE. il the problem

is reasonably small or the aclive set is ill-conditioned. OLlherwise, sctling ORTHOG to

- JFALSE. will often lead to a reduction in solution time with negligible loss of reliability. :
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§. INPUT/OUTPUT PARAMETERS

5. INPUT/OUTPUT PARAMETERS

follows:
ISTATE(5)
-2

-1

ISTATE(j)
0
1

If coLD =
FALSE., cvery clement of ISTATE must be sct to one of the values given above to define

. r .
'f' e .:'/-- rJ'

ata e

ISTATE is an integer array of dim ~sion NCTOTL that indicates the status of every constraint
with respect to the working sct. The ordering of ISTATE is the same as that described
above under BL, i.e., the first N components of ISTATE rcfer to the upper and lower
bounds on the variables, and components N + 1 through N + NCLIN rcfer to the upper
and lower bounds on Az. The significance of cach possible value of ISTATE(J) is as

Meaning

The constraint violates its lower bound by morc than FEATOL(5). This
value of ISTATE cannot occur aller a leasible point has been found.

The constraint violales its upper bound by more than FEATOL(j). This
value of ISTATE cannot occur after a feasible point has been found.

The constraint is not in the working set. Usually, this means that the
constraint lies strictly between its bounds,

This incquality constraint is included in the working set at its lower
bound. The value of the constraint is within FEATOL(j) of its lower
bound.

This inequality constraint is included in the working set at ils upper
bound. The valuc of the constraint is within FEATOL(s) of ils upper
bound. .

The constraint is included in the working sct as an cqualily. This value
of ISTATE can occur only when BL(j) = BU(j). The corresponding
constraint is within FEATOL(5) of its required value.

TRUE., ISTATE nced nol be sel by the user. Ilowever, when COLD is

a suggested initial working set (which will be changed by QPSOL il necessary). The most
likely valucs are;

Meaning
The corresponding constraint should not be in the initial working set,
The censtraint should be in the initial working sct at its lower bound.

The constraint should be in the initial working set at its upper bound.

<4
%

The constraint should be in the initial working sct as an cquality. This _. '
value must nol be specified unless BL(j) = BU(j). The values 1, 2 or 3 Ry
all have the same eflect when BL(5) = BU(j). - N
T!. ":'
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h 5. INPUT/OUTPPUT PARAMETERS ' QPSOL/11

Other values of ISTATE are also acceptable. In particular, if QPSOL has been called
previously with the same values of N and NCLIN, ISTATE alrcady contains satisfactory

Ej values.
L~

When QPSOL cxits with INFORM sct to 0, 1 or 3, the values in the array ISTATE indicate
* the status of the constraints in the active set at the solution. Otlherwise, ISTATE
§

indicates the composilion of the working set at the final iterate.

X is a real array of dimension N that contains the current estimate of the solution. On
entry to QPSOL, X must be dcfined; on exit from QPSOL, X contains the best estimate of
the solution.
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6. OUTPUT PARAMETERS

INFORNM
0

8
9

INFORM is an integer that indicates the result of QPSOL. (When MSGLVL > 0, a short description
of INFORM is printed.} The possible values of INFORM are:

Definition
X is a strong local minimum, i.e., the projected gradient is negligible,
the Lagrange multipliers are optimal, and the projected lessian is
positive definite. In some cases, a zero value of INFORM means that X is
a global minimum (c.g., when the lessian matrix is positive definite).

X is a weak local minimum (the projected gradient is negligible, the
Lagrange multiplicrs are optimal, but the projected Hessian is only
positive semi-definite). This means that the solution is not unique.
The solulion appears to be unbounded, i.c., the quadratic function is
unbounded below in the feasible region. This valuc of INFORM occurs
when a step of infinity would have to be taken in order to continue the
algorithm.

X appcars to be a local minimum, but optimality cannot be verified
because some of the Lagrange mullipliers are very small in maguitude.
The iterates of the QI’ phase could be cycling, since a total of 50
changes were made Lo the working sct withoul allering X.

The limit of ITMAX ileralions was reached in the QP phase before
normal termination occurred.

The LI phase terminated withoul finding a feasible point, and hence
it is not possible Lo satislfy all the constraints Lo within the lolerances
specificd by Lthe FEATOL array. In this case, the final iterale will reveal
values for which there will be a feasible point (e.g., a fcasible point will
exist il the feasibility tolerance for cach violated constraint exceeds
its RESIDUAL at the final poinl). The modificd problem (with altered
values in FEATOL) may then be solved using a warm start.

The iterates may be cyeling during the LI* phase; sce the comments
above under INFORM = 4.

The limit of ITMAX ilcralions was rcached during the LP phase,

An input parameter is invalid.

ITER is an integer Lhat gives the number of iterations performed in cither the LI phase or
the QP phase, whichever was last entered. (Note that ITER is resct to zero afler the
LP phase.)

""."‘
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H 0BJ is the value of the quadratic objective function at X if X is leasible (INFORM < 5), or the
sum of infeasibilities at X otherwise (6 < INFORM < 8).

CLAMDA is a real array of dimension NCTOTL that contains the Lagrange multiplicr for every
constraint with respect to the current working set. The ordering of CLAMDA follows the
convention given above under BL, i.e., the first N components contain the multipliera t O
for the bound constraints on the variables, and the remaining components contain the
multipliers for the gencral linear constraints. If ISTATE(j) = O (i.e., constraint j is not
in the working sct), CLAMDA(j) is zcro. If X is optimal, CLAMDA(5) should be non-negative
if ISTATE(j) = 1 and non-positive il ISTATE(y) = 2. .o
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QPSOL/14 ‘ 7. WORKSI’ACE PARAMETERS
i
- 7. WORKSPACE PARAMETERS . :
:::: by | is an integer array of dimension LENIW, which provides integer workspace for QPSOL.
b LENIW  is the dimension of IW, and must be at least N + 2 + min (N, NCLIN). - .
jl:;ﬁ w is a real array ol dimension LENW, which provides rcal workspace for QPSOL.
':-_- LENW is the dimension of W. If LP = .FALSE. or NCLIN > N, LENW must be at least 2N% + 4N +
E NROWA + 2NCON, where NCON = max(1, NCLIN). If LP = .TRUE. and NCLIN < N, LENW
o must be at least 2NCON? + 4N + NROWA + 2NCON. < -
If MSGLVL > 0, Lhe amounts of workspace provided and required are printed. As an alternative .
to compuling LENW from the formula given above, Lhe user may prefer Lo obtain an appropriate

value from the oulput of a preliminary run with a positive value of MSGLVL and LENW sct to 1
(QPSOL will then terminate with INFORM = 9).
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8. AUXILIARY SUBPROGRAMS AND LABELLED COMMON QPSOL/15

t 8. AUXILIARY SUBPROGRAMS AND LABELLED COMMON

x> The subroutines associated specifically with the QPSOL package are the following:

ADDCON ALLOC BDPERT BNDALF

- CHKDAT ~ DELCON  FINDP GETLAM

s LPBGST  LPCORE  LPCRSH LPDUMP

. LPGRAD LPPRT MOVEX QPCHKP

_ QPCOLR QPCORE QPCRSH QPDUNP
QPGRAD QPPRT PRTSOL RSOLVE
TQADD TSOLVE ZYPROD.

QPSOL also uscs the basic lincar algebra subroutines

AXPY CONDVC COPYMX COPYVC
DoT DSCALE ELM ELMGEN
ETAGEN QUOTNT REFGEN ROT3

. ROTGEN SSCALE V2NORM ZEROVC

and the subroutine MCHPAR, which dcfines machine-dependent constants (see Section 11).

The subroutines in the QPSOL package use the following labelled COMMON areas:

SOLMCH (15 REAL variables; see Seetion 11)
SOL1CM (3 INTEGER variables)

SOL3CM (4 INTEGER variablcs)

SOLA4CM (10 REAL variables)

SOLS5CM (3 REAL variables)

SOL1LP (15 INTEGER variablcs)

SOL2LP (1 LOGICAL variable.)
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9. DESCRIPTION OF THE PRINTED OUTPUT

This scction describes the intermediate printout produced by QPSOL. When MSGLVL > 5, a

line of output is produced for every change in the working sct (thus, several lines may be printed
during a single ilcration).

To aid interpretation of the printed results, we mention the convention for numbering the
constraints: indices 1 through N refer to the bounds on the variables, and indices N + 1 through
- N + NCLIN refer to the general constraints. When the status of a constraint changes, the index
b of the constraint is printed, along with the designation “L” (lower bound), “U” (upper bound) or

“E” (equality). If the problem is non-convex, the character “V” may appear alongside an index
in the “delete” column. This will occur il the initial projected llessian is not sulliciently positive
= definite (and therefore the Cholesky faclor corresponds only Lo a subset of the columns of Z; see
Section 2). The “V” is used to indicate that the Cholesky lactor has been expanded to include a

new column of Z. The associaled index gives the current dimension of the Cholesky factor.
In the LP phase, the printout includes the lollowing:

i ITN is the iteration count.

KDEL is the index of the constraint deleted from the working set. Il KDEL is
- zero, no constraint was deleted.
5 KADD is the index of the constraint added to Lthe working scl. If KADD is zero,

no conslraint was added.

. STEP is Lhe step taken along the compuled search direction.
NUNINF is the number of violated constraints (infeasibilities).
SUMINF is a weighted sum of the magnitudes of the constraint violations.
\ LPOBJ is Lthe value of the linear objeelive lunction érz. It is printed only if LP
o is .TRUE.

During the QI’ phase, the printout includes the following:

PRy )

ITN is the itcration count (resct to scro alter the LD phase). NG

P

:-"l‘. vy

KDEL is the index of the constraint deleted from the working set. If KDEL is
zcro, no constraint was aeleted.

O

0
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::: KADD is the index of the constraint added Lo the working sct. Il KADD is zcro,
.- no constraint was added.
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9. DESCRIPTION OF THE PRINTED OUTPiJT QPSOL/17

STEP is the step ax taken along the direction of search (if STEP is 1.0, the
current point is a minimum in the subspace defined by the current
working set).

NHESS is the number of calls to subroutine QPHESS.

OBJECTIVE is the value of the quadratic objective lunction.

NCOLZ _ is the number of columns of Z (sece Scction 2). In gencral, it is the
[ dimension of the subspace in which the quadratic is currcnily being
minimized.

NORM GFREE is the Euclidean norm of the gradient of the objective Funclion with

respeet to the free variables, i.c. variables not currently held at a bound

) (NORM GFREE is not printed if ORTHOG is .FALSE.). In somc cascs, the

? objcctive function and gradient are updated rather than recomputed. If

so, this entry will be “==" (o indicate that the gradient with respect to
the free variables has not been computed.

NORM QTG . is a weighled norm of the gradient of the objective function with respect
to the frec variables (NORM QTG is not printed if ORTHOG is .TRUE.). In
some cases, Lhe objcctive function and gradient are updaled rather than
recompuled. If so, this entry will be “-=" Lo indicale that the gradient
with respect Lo the free variables has not been computed.

NORM ZTG is the Buclidean norm of the projected gradient (scc Scction 2).

HESS MOD ’ is Lthe correction added Lo the diagonal of the projected Hessian Lo ensure
that a salisfactory Cholesky factorizalion exists (sce Seclion 2). When
the projecled llessian is sufliciently positive definite, HESS MOD will be
scro.

When MSGLVL = 1 or MSGLVL > 10, the summary printout at the end of exccution of QPSOL
includes a listing of the stalus of cvery constraint. Note that defaull names are assigned to all
variables and constiraints.

The following describes the prinloul for each variable.

VARIABLE is the name (VARBL) and index 7 of the variable.

STATE gives Lthe slate of the variable (FR il ncither bound is in the working set,

EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound).

N If VALUE lics oulside the upper or lower bounds by more than FEATOL(5),
. STATE will be “++” or “~-" respectively.
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| —
VALUE is the value of the variable at the final iteration. 9 .
R
LOWER BOUND is the lower bound spccified for the variable. (“NONE” indicates that ,-'.:;-‘::
BL(j) < ~BIGBND.) S
' UPPER BOUND is the upper bound specified for the variable. (“NONE” indicates that - :M
' BU(j) > BIGBND.) R
LAGR MULTIPLIER is the value of the Lagrange multiplier for the associated bound con- 5
straint. This will be zero if STATE is FR. If X is optimal, the multiplier :
should be non-negative if STATE is LL, and non-posilive if STATE is UL.
RESIDUAL is the difference between the variable and the necarer of its bounds BL(5)

and BY(y).
The lollowing summary printout is given for cach gencral constraint.
LINEAR CONSTR is the namc (LNCON) and index %, i = 1 to NCLIN, of the constraint,

STATE _ is the state of the constraint (FR for a conslraint nol in the working set,
EQ for an cquality, LL for an incquality constraint at its lower bound, UL
for an incquality constraini at its upper bound). If VALUE lics outside
the upper or lower bounds by more than its leasibility tolerance, STATE

“

will be “+4™ gp “~=" respectively.

VALUE is the value of the constraint at the final point, i.c., the appropriate
component of the vector Az,

LOWER BOUND is Lhe specificd lower bound for the constraint. (“NONE™ indicates that
BL(N + ¢) < —BIGBND.)

UPPER BOUND is the specified upper bound for the constraint. (“NONE” indicates that
BU(N + 1) > BIGBND.)

LAGR MULTIPLIER is Lthe value of the Lagrange multiplier. This will be zero if STATE is FR.
If X is optimal, the multiplicr should be non-negative il STATE is LL, and
non-positive il STATE is UL.

RESIDUAL is the residual of the constraint with respeet to its ncarer bound, i.e.,
the dilference between VALUE and the necarer of its two bounds.
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10. ERROR RECOVERY

Reason for termination Recommended Action

Underflow If the machine parameter indicating an underflow check (WMACH(9)) is
zero, floating-point undcrflow may occur occasionally, but can usually be
ignored. To avoid underflow, set WMACH(9) to a positive valuc; however,
this will lead to a noliccable loss of efficicney. If underflow continues to
occur for no apparent rcason, contact the authors at Stanford University.

Overflow 1T the printed output before Lhe overflow crror contains a warning about
scrious ill-conditioning in the working set when adding the j-th con-
straint, it may be possible Lo avoid the diflicullty by increasing Lthe mag-
nitude of FEATOL(7) and rerunning the program. If the message recurs
even after this change, the offending linearly dependent constraint (with
index “j”) must be removed from the problem. If a warning message
did not precede the fatal overflow, contact the authors at Stanford
University.

INFORM = 3 QP’SOL has probably found a solution. IHowever, the presence of very
small Lagrange mullipliers means that the predicted aclive sct may be
incorrect, or that X may be only a constrained stationary point rather
than a local minimum. The method in QI’SOL is nol guarantced to
find the correct active sel when there are small multipliers. QPP'SOL
attempts Lo delele consteainls with zero multiplicrs, but this docs not
necessarily resolve the issuc. The determination of the correct aclive set
is a combinatorial problem that may require an extremely large amount
of time. The occurrence of small multiplicrs often (but not always)
indicates that there are redundant constraints.

INFORM = 41 This value will accur if 50 ilerations are performed in the QP phase
withoul changing X. The user should check Lhe printed oulput for a
repeated patlern of constraint delelions and additions. If a scquence of
constrainl changes is being repeated, the itcrales are probably cycling.
(QPSOL docs not contain a method that is guaranteed to avoid cycling,
which would be combinatorial in nature.) Cycling may occur in two

circumstances: at a constrained stalionary point where there are some T A
small or scro Lagrange multiplicrs (sec the discussion of INFORM = 3); :::::::::::;:;
or at a point (usually a vertex) where the constraints that arc satisfied _-.::’,\,::
RO
SN
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exactly are nearly linearly dependent. In the latter case, the user has the ’ iz,
option of identifying the offending dependent constraints and removing
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them from the problem, or restarting the run with larger values of o
FEATOL for ncarly dependent constiraints. I QPSOL Lerminates with

Ty e

Te "¢

INFORM = 4, but no suspicious patiern of constrainl changes can be

N -
- observed, it may be worthwhile to restart with the final X (with or
o without the warm start option). :
= INFORM = § The value of ITMAX may be too small. If the method appears to be mak- __

= ing progress (c.g., the objective function is being satisfactorily reduced),

increase ITMAX and rerun QPSOL (possibly using the warm start facility
Lo specily the initial working set). If ITMAX is alrcady large, but some of
the consiraints could be nearly lincarly dependent, check Lhe outlput for _
- a repealed patlern of constraints entering and leaving the working set. ;‘
(Ncar-dependencies are often indicated by wide variations in size in the
diagonal clemenis of the T matrix, which will be printed if MSGLVL >
30.) In this casc, the algorithm could be cycling (sce the comments for
INFORM = 4.)

INFORM = 6 The LI’ phase has terminated withoutl finding a feasible point, which
means that no feasible point exists for the given FEATOL array. The user
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should cheek that there are no constraint redundancies. If the data for
the j-th constrainl arc accurale only to the absolute precision 8, the
user should ensure that the value of FEATOL(j) is greater than 8. For -. -

. example, il all clements of A are of order unily and arc accurale only

:'.'..-'_ to three decimal places, cvery component of FEATOL should be al least o
_ 10-3. ‘ <
'.‘. .

— INFORM= 7 or 8 These values are the analogue in the LP phase procedure of INFORM oo
o values 41 and 5. T
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11. IMPLEMENTATION INFORMATION

This program has been written in ANSI (1968) Fortran and tested on an IBM 3081 computer
using the WATFIV Compiler Version 1 Level 6. All subroutines in QPSOL are PFORT-compatible
(Ryder, 1974), except for CHKDAT, GETLAM and PRTSOL, which contain A2 format specifications.

At the beginning of QPSOL, the subprogram MCHPAR is called to assign various machine-
dcpendent parameters. These parameters are stored in Lthe array WMACH(15) in the labelled COMMON
block SOLMCH.

The specification of MCHPAR is

SUBROUTINE MCHPAR
REAL WMACH
COMMON /SOLMCH/ WMACH(15)

The first cleven components of the REAL array WMACH must be set in MCHPAR. The components
of WMACH arc defined as follows.

Definition
WMACH(1) is NBASE, the base of floating-point arithimetic.
WMACH(2) = is NDIGIT, the numbcr of NBASE digits of precision.
WMACH(3) is EPSMCH, the floaling-poinl precision.
WMACH(1) is RTEPS, the squarc rool of EPSMCH.
WMACH(5) is FLMIN, the smallest positive lNloatling-point number.
WMACH(6) is RTMIN, the square rool of FLMIN.
WMACH(7) is FLMAX, the largest positive floaling-point number.
WMACH(8) is RTMAX, the square root of FLMAX.
WMACH(9) is UNDFLW, which specifics whether or not NPSOL should check for

underfllow in certain computations. 1If UNDFLW = 0, no undcrfllow
checking will be performed. If UNDFLW is scl to a posilive number,
QPSOL will check for underflow and will replace too-small quantitics
by zcro. Nolc that QPSOL will run faster if no underflow checking
takes place, i.c. il WMACH(9) = 0.0.

WMACH(10) is NIN, the file number lor the input stream,

WMACH(11) is NOUT, the filc number for the oulput stream.
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The following version of MCHPAR (which is provided by the Systems Optimization Laboratory)
contains the paramecters associaled with double precision on a machine in the IBM 370 series.

The aser must substitule a version of MCHPAR thal is appropriate for the machine to be used.

SUBROUTINE MCHPAR
. c
. DOUBLE PRECISION  WMACH
B COMMON  /SOLMCH/ WMACH(1S)
‘ c
A C MCHPAR MUST DEFINE THE RELEVANT MACHINE PARAMETERS AS FOLLOWS.
- c KMACH(1) = NBASE = BASE OF FLOATING-POINT ARITHMETIC.
o c KMACH(2) = NDIGIT = NO. OF BASE WMACH(1) DIGITS OF PRECISION.
c WMACH(3) = EPSHMCH = FLOATING-POINT PRECISION.
- c WMACH(4) = RTEPS = SQRT(EPSHMCH).
! c WMACH(5) = FLMIN = SMALLEST POSITIVE FLOATING-POINT MUMBER.
. c WMACH(6) = RTHMIN = SQRT(FLMIN).
c KMACH(7) = FLMAX = LARGEST POSITIVE FLOATING-POINT MUMBER.
c WMACH(8) = RTMAX = SGRT(FLMAX).
c WMACH(9) = UNDFLW = 0.0 IF UNDERFLOW IS NOT FATAL, *VE OTHERWISE.
c KMACH(10) = NIN = STANDARD FILE NUMBER OF THE INFUT STREAM.
c WMACH(11) = NOUT = STANDARD FILE NUMBER OF THE OUTPUT STREAM.
c
INTEGER NBASE, NDIGIT, NIN, NOUT
DOUBLE PRECISION  DSGRT
c
NBASE =16
NDIGIT = 14
WMACH(1) = NBASE
HMACH(2) = NDIGIT
WMACH(3) = WMACH(1)#%(1 - NDIGIT)
WMACK(4) = DSGRT(WMACH(3))
HMACHIS) = WMACH( 1 )%##(-62)
KMACH(6) = DSGRT(WMACH(5))
WMACH(7) = WMACH(1)¥we1
WMACH(8) = DSGRT(WMACH(7))
WHACH(9) = 0.0D+0
NIM =5 .
NouT =6 ;
KMACH(10) = NIN o
KMACH(11) = NOUT o]
c
C---- IN WATFIV, ALLOW UP TO 100 UNDERFLOWS. —_ - 4
C---- CALL TRAPS { 0,0,100 ) -
RETURN i
c
C END OF MCHPAR .
END -

-
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11. IMPLEMENTATION INFORMATION QPSOL/23

The values of NBASE, NDIGIT, EPSMCH, FLMIN and FLMAX for several machines are given in the
following table, for both single and double precision; RTEPS, RTMIN and RTMAX may be computed
using Fortran statements. The values NIN and NOUT depend on the machine installation.

For each precision, we give two values for EPSMCH, FLMIN and FLMAX. The first value is a
Fortran decimal approximation of the exact quantity; use of this valuc in MCHPAR should cause

no difficulty cxcept in extreme circumstances. The second value is the cxact mathematical

¢ I

represcntation.
Table of machine-dependent parameters
Variable | 1BM 360/370 | CDC 6000/7000 DEC 10/20 Univac 1100 DEC VAX
Single Single Single Single Single
NBASE 16 2 2 2 2
NDIGIT 6 48 27 27 24
EPSMNCH 9.54E-7 7.11E-156 7 .48E-9 1.50E-8 1.20E-7
16—5 2—47 2—27 2—26 2—23
FLMIN 1.0E-78 1.0E-293 1.0E-38 1.0E-38 1.0E-38
16—95 2~975 2-129 2-129 2—!28
FLMAX 1.0E+75 1.0E+322 1.0E+38 1.0E+38 1.0E+38
IGSSII_IG—EL 2!07%1_2—48) 2]27“_2—27) 2127(1_2—21) 2121(1_2—24)
Variable | 113BM 360/370 | CDC 6000/7000 DEC 10/20 Univac 1100 DIEC VAX
Double Double Double Double Double
NBASE ' 16 2 2 2 2
NDIGIT 14 96 62 6t 56
EPSMCH 2.22D-13 2.53D-29 2.17D-19 8.68D-19 2.78D-17
16—13 2—95 2—82 2-80 2-85
FLMIN 1.0D-78 1.0D-293 1.0D-38 1.0D-308 1.0D-38
18—05 2—976 2—|29 2-|025 2-[2'
FLMAX 1.0D+756 1.0D+322 1.0D+38 1.0D+307 1.0D+38
1663“'[6-'3 2l010(|_2-98L 2121(1 _.2-62) 2]023(._2-“) 2]21“_2-50
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12. EXAMPLE PROGRAM AND OUTPUT

This section contains a listing and the computed results from a sample main program that
calls QPSOL to solve an indefinite quadratic program. The problem has seven variables and seven

gencral constraints.
The vector ¢ is given by

o
h The Hessian is
¥

= (—.02, —.2, —.2, —.2, —.2, .04, .04)T.

| ( 2 0 0 0 o0 o0 O \
0 2 0 0 o0 o0 O
o 0 2 2 o0 0 O
H = o 0 2 2 o o0 O ’
o 0 0 0 2 0 O
o 0 0 o0 0 -2 -2
k o 0 0 0 0 -2 -2 }

and is dclined by the subroutine QPHES1, which does nol store IT explicitly.
The general constraint matrix A4 is

(10 10 10 10 10 10 10
A5 04 .02 .04 02 .01 .03
03 .05 .08 .02 .06 .01 00
A=| .02 04 .01 02 02 00 00
02 .03 00 00 .01 00 00
20 75 .80 .75 .80 .97 0.0
\oz 06 .08 .12 .02 .01 .97

The lower and upper bound vectors £ and u are

t=(-.01, —.1, —.01, —.04, ~.1, —.01, —.01,
— .13, —00, —00, —00, ~00, —.099, —.003 )7,
u = (.01, .15, .03, .02, .05, +00, +00,

— .13, —.0049, —.0064, —.0037, —.0012, +o00, .002)T.

The starting point zg (which is infcasible) is

zo = (—.01, ~.03, 0.0, —.01, —.1, .02, .01)7,
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- 12. EXAMPLE PROGRAM AND OUTPUT QPSOL/25

. . The computed solution (to five figures) is k.

»

L

Ny & = (-.01, —.060865, .018259, —.024261, —.062006, .013805, .0040665 )T.

yap-Ty Tt e
e,
a'e

ol

One bound constraint and four general constraints are active at the solution.
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QPSOL/28

CONCOWVNDUN

16
15
16
17
18

19

20

21

CuuBEGIN FILE QFMAIN FORTRAN D.

AOOOOOO0O000 OO00O000

OO0 0000 OoOann o000

EXAMPLE PROGRAM FOR SUBROUTINE QPSOL.
DOUBLE PRECISION VERSION 3.2. SEPTEMBER 1%84.
THE VALUE OF THE PARAMETER FEATOL IS APPROPRIATE FOR A MACHINE

WITH A PRECISION OF 15 DECIMAL DIGITS.
TEIIEEIEIE 36 36 26 3 29I EI I AT I I I I I HIE NI IEIE 30N IS DI S

INTEGER I, INFORM, ITER, ITHMAX, J» LIMORK, LWORK
INTEGER MSGLVL, N, NCLIN, NCOLH, NCOLH1, NCTOTL
INTEGER NIN, NOUT, NROWA, NROWH, NROWH1

INTECGER ISTATE(14), IWORK(50)

DOUBLE PRECISION BIGBND, EPSMCH, 0BJ, RYEPS

DOUBLE PRECISION  ZERO, TWO

DOUBLE PRECISION A(7,7), BLU14), BUL14), CLAMDAL14), CVECI7)
DOUBLE PRECISION  FEATOL(14), HESS(1,1), HESSI1(7,7)s X(7)
DOUBLE PRECISION WORK(200)

DOUBLE PRECISION DSGRT'

LOGICAL CoLD, LP, ORTHOG
EXTERNAL QPFHES!, QPHES2
DATA ZERO , TWO

* /0.00+0, 2.0D+0/

SET THE DECLARED ARRAY DIMENSIONS.

NROWA = THE DECLARED ROW DIMENSION OF A.
NROMH = THE DECLARED ROW DIMENSION OF HESS.
NCOLH = THE NUMBER OF COLUMNS IN HESS.

(IF QFHESS DEALS WITH THE HESSIAN IMPLICITLY,
NROWH AND NCOLH CAN BOTH BE 1.)
LIKORK = THE LENGTH OF THE INTEGER WORK ARRAY.

LWORK THE LENGTH OF THE DOUBLE PRECISION WORK ARRAY.
NROWA = 7
NROIH = 1
NCOLH = 1%
LIWORK = 50
LWORK = 200

SET THE APPROXIMATE MACHINE PRECISION.
EPSMCH = 1.0D-15

ALLOW UP TO 20 ITERATIONS TO FIND A FEASIBLE POINT,
AND THE SAME NUMBER TO MINIMIZE THE QUADRATIC FUNCTION.

ITMAX = 20

ASK FOR BRIEF OUTPUT EACH ITERATION, AND A FULL PRINT-OUT
OF THE FINAL SOLUTION.

MSGLVL = 10

SET THE PROBLEM DIMENSIONS.

N = THE NUMBER OF VARIABLES.
NCLIN = THE NUMBER OF GENERAL LINEAR CONSTRAINTS (MAY BE 0).
NCTOTL = THE TOTAL NUMBER OF VARIABLES AND GENERAL CONSTRAINTS.
(THE ARRAYS ISTATE, BL, BU, CLAMBDA MUST BE AT LEAST
THIS LONG.)
R A R T T N N N PG
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PSOL/27
12. EXAMPLE PROGRAM AND OUTPUT Q /
. 22 N =7
ol 23 NCLIN = 7
£ 24 NCTOTL = N ¢ NCLIN
c
€ BOUNDS GREATER THAN BIGBND NILL BE TREATED AS PLUS INFINITY.
- C BOUNDS LESS THAN - BIGBND WILL BE TREATED AS MINUS INFINITY.
c
25 BIGBND = 1.0E+10
c
€ ANY BOUND OR LINEAR CONSTRAINT MAY BE VIOLATED BY AS MUCH AS FEATOL.
c
- 26 RTEPS = DSQRT( EPSMCH )
27 00 20 J = 1, NCTOTL
28 FEATOL{J) = RTEPS
29 20 CONTINUE
- c
- C A COLD START IS NEEDED FOR THE FIRST CALL TO QPSOL.
C WE WANT TO SOLVE A QUADRATIC PROGRAM, NOT AN LP PROBLEM.
C USE AN ORTHOGONAL FACTORIZATION OF THE MATRIX OF CONSTRAINTS
'r; C IN THE NORKING SET.
. c
30 cow = .TRUE.
31 LP = .FALSE.
o 32 ORTHOG = .TRUE.
c
- C READ THE DATA ARRAYS.
C NIN = THE UNIT NUMBER FOR INPUT.
. C NOUT = THE UNIT MRBER FOR PRINTING.
. C CVEC = THE LINEAR PART OF THE OBJECTIVE FUNCTION.
c A = THE GENERAL CONSTRAINT MATRIX.
Cc BL = THE LOWER BOUNDS ON X AND A#=X.
C BU = THE UPPER BOUNDS ON X AND AWX.
c X = THE INITIAL ESTIMATE OF THE SOLUTION.
c
33 NIN =5
3% NOUY =6
) 35 READ (NIN, 1000) ( CVEC(J), J=1,N )
“ 36 READ (NIN, 1000) (( A(X,J), J=1,N ), I=1,NCLIN )
e 37 READ (NIN, 1000) (  BL{J), J=1,NCTOTL )
38 READ (NIN, 1000) (  BU(J), J=1,NCTOTL)
39 READ (NIN, 1000) (  X(J), J=1,N)
c
C PRINT THE DATA.
. c
a0 IF (NOUT .LE. 0) 60 YO 50
o1 NRITE (NOUT, 2000) (CVEC(J), J=1,N)
42 WRITE (NOUT, 2100) ((A(I,J), J=1,N}, I=1,NCLIN)
43 WRITE (NOUT, 2200) { BL(J), J=1,NCTOTL)
44 WRITE (NOUT, 2300) ( BU(J), J=1,NCTOTL)
_ a5 WRITE (NOUT, 2400) ¢  X(J), J=1,N)
-, c
g c '
= C SOLVE THE PROBLEM.
C THE HESSIAN IS DEFINED IMPLICITLY BY SUBROUTINE GQPHES!.
.. c
- %6 50 CALL QPSOL({ ITMAX, MSGLVL, N,

T ISR

N NN N N s

» NCLIN, NCTOTL, NROWA, NROWH, NCOLM,

" BIGBND, A, BL, BU, CVEC, FEATOL, HESS, QPHES!,

» COLD, LP, ORTHOG, ISTATE, X,

» INFORM, ITER, OBJ, CLAMDA,

» INORK, LINORK, NORK, LMORK ) .
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: QI'soL/28 12. EXAMPLE PROGRAM AND OUTPUT
- c
T C TYEST FOR AN ERROR CONDITION.
c
a7 IF (INFORM .6T. 0) 60 TO 900
. c
e c
C THE FOLLONING IS FOR ILLUSTRATIVE PURPOSES ONLY.
B C WE DO A WARM START NITH THE FINAL WORKING SET OF THE PREVIOUS RUN.
‘. C THIS TIME WE STORE THE HESSIAN EXPLICITLY IN HESSt,
. C AND USE THE CORRESPONDING SUBROUTINE QPHES2.
: c
-r a8 WRITE (NOUT, 2500)
o 49 COLD = .FALSE.
50 MSGLYL = §
51 NROWHT = 7
52 NCOLHS = 7
. c
53 00 200 J =1, N
. 54 PO 100 I =1, N
~ s5 HESS1(I,J) = ZERO
56 100  CONTINUE
- 57 IF (J .LE. 5) HESS1(J,J) = THO
RN 58 IF (J .6T. 5) HESS1(J,J) = - THO
59 200 CONTINUE
c
60 HESS1(3,4) = TNO
61 HESS1(4,3) = TNO
- 62 HESS1(6,7) = - THO
i 63 HESS1(7,6) = - THO
c
64 CALL QPSOL( ITMAX, MSGLVL, N,
. » NCLIN, NCTOTL, NROWA, NROWH1, NCOLMt,
» BIGBND, A, BL, BU, CVEC, FEATOL, MESS1, QPHES2,
» COLD, LP, ORTHOG, ISTATE, X,
o » INFORM, ITER, OBJ, CLAMDA,
» INORK, LINORK, WORK, LWNORK )
c
55 65 IF (INFORM .6T. 0) 60 TO 900
66 sSTOP
c
~. C ERROR EXIT.
c
67 900 WRITE (NOUT, 3000) INFORM
- 68 STOP
c
- 69 1000 FORMAT(7E10.2)
70 2000 FORMAT(/ 14H CVEC. Z (1%, TF10.23)
7 2100 FORMAT(/ 1G4H ROWS OF A. / (1X, 7F10.2))
72 2200 FORMAT(/ 14H LOWER BOUNDS. / (1X, 7E10.2))
73 2300 FORMAT(/ 144 UPPER BOUNDS. / (1X, 7E10.2))
- 74 2400 FORMAT(/ 12H INITIAL X. / (1X, 7F10.2))
- 75 2500 FORMAT(//7484 A RUN OF THE SAME EXAMPLE WITH A NARM START....)
9 76 3000 FORMAT(/ 32H QPSOL TERMINATED WITH INFORM =, I3)
- c
. C END OF THE EXAMPLE PROGRAM FOR QPSOL.
.- 77 END
- 78 SUBROUTINE QPHESI( N» NROWM, NCOLM, JTHCOL, HESS, X, HX )
s 79 INTEGER Ns NROWH, NCOLM, JTHCOL
N
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. 12. EXAMPLE PROGRAM AND QUTPUT QPSOL/29
:: 80 DOUBLE PRECISION  HESS(NROMM,NCOLH), HX(N}, X(N)
. [+
c
C QPHES! COMPUTES THE VECTOR HX = (HESS)®X FOR SOME MATRIX HESS
- C THAT DEFINES THE HESSIAN OF THE REQUIRED QP PROBLEM.
- c
: C IN THIS VERSION OF QPHESS THE HESSIAN MATRIX IS IMPLICIT.
€ THE ARRAY NESS IS NOT ACCESSED. THERE IS NO SPECIAL CODING
C FOR THE CASE JTHCOL .6T. O.
c
Cc
8 DOUBLE PRECISION ONE, TNO
82 DATA ONE/1.0D¢%0/, THNO/2.0D%0/
- Cc
v a3 HX(1) = THO*X(1)
84 HX(2) = THORX(2)
85 HX(3) = THOR(X(3) + X(4))
86 HX(4) = HX(3)
e 87 HX(S) = THNO*X(5)
I 88 HXt(6) = - THOR(X(6) ¢ X(7))
89 HX(7) = HX(6)
90 RETURN
. c
C END OF QPHES1
9" END
92 SUBROUTINE QPHES2( N, NROWH, NCOLH, JTHCOL, HESS, X, HX }
93 INTEGER Ny NROMH, NCOLH, JTHCOL
9% DOUBLE PRECISION  NESSUINRDWH,NCOLH), HX(N), X(N)
Cc
c
C IN THIS VERSION OF QPHESS, THE MATRIX H IS STORED IN HESS AS
C A FULL THO-DIMENSIONAL ARRAY,
C COPYVC AND ZEROVC ARE UTILITY ROUTINES USED BY QPSOL.
¢ ‘
Cc
95 INTEGER I, J
9% DOUBLE PRECISION XJ
c
97 IF (JTHCOL .EQ. 0) 60 TO 100
[
C SPECIAL CASE -- EXTRACT ONE COLUMN OF H.
c
98 CALL COPYVC( N, HESS(1,JTHCOL), N, 1, HX, N, 1)
99 RETURN
c
C NORMAL CASE.
c
100 100 CALL ZEROVC( N, HX, N, 1 )
10¢ 00 200 J = 1, N
102 XJ = X(J)
103 DO 150 I = 1, N
104 HX(I) = HX(I) ¢ HESS(I,J)nXJ
105 150 CONTINUE
106 200 CONTINUE
107 RETURN
c
C END OF QPHMES?2
108 END
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12. EXAMPLE PROGRAM AND OUTPUT

SUBROUTINE QPHES3( N, NROWM, NCOLH, JTHCOL, MESS, X, HX )
INTEGER N» NROWM, NCOLH, JTHCOL
DOUBLE PRECISION  HESS{NROMM,NCOLH), HX(N), XIN)

IN THIS VERSION OF QPHESS, THE SYMMETRIC PART OF H IS STORED IN
THE LONER HALF OF THE TNO-DIMENSIONAL ARRAY HESS, I.E., IN THE
ELEMENTS HESS(I.J), I .GE. J.

INTEGER
DOUBLE PRECISION

I, J» JP1, LROWH, NMt, NUM
S, XJ

IF (JTHCOL .£Q. 0) 60 TO 100
SPECIAL CASE -- EXTRACT ONE COLUMN OF H.

LROWH = NROWHM(JTHCOL - 1) ¢ 1

CALL COPYVC( JTHCOL, HESS(JTHCOL,1), LROWN, NROMM, HX, JTHCOL, f )
NUM = N - JTHCOL

JP1 = JTHCOL + 1

IF (NUM .6T. 0)

®  CALL COPYVC( NUM, HESS(JP1,JTHCOL), NUM, 1, HX(JP1), NUM, 1 )
RETURN

NORMAL CASE.

10000 200 I =
S =0. OD
00 150 J
$ =
CWTIWE
HX(I) = 8
200 CONTINUE
IF (N .LE. 1) RETURN

0||°-

N
I» N
HESS(J,I)%X(J)
150

N1 = N -1
DO 400 J = 1, NMI
XJ = X(J)
JPY = J ¢+
00 350 I = JP1, N
HX(I) = HX(I) ¢ HESS(I,J)uXJ
350 CONTINUE
400 CONTINUE
RETURN

END OF QPHES3
END

SUBROUTINE QPHES4( N, NROWH, NCOLH, JTHCOL, HESS, X, HX )
INTEGER N, NROWH, NCOLH, JTHCOL
DOUBLE PRECISION HESS(NROWH), HX{N), X(N)

IN THIS VERSION OF QPHESS, THE SYMMETRIC PART OF H IS STORED IN
THE ONE-DIMENSIONAL ARRAY HESS. NOTE THAT NROWH IS USED TO DEFINE
THE LENGTH OF HESS, AND MUST BE AT LEAST Nw(N ¢ 1)/2. THE
PARAMETER NCOLH IS NOT USED HERE, BUT IT MUST BE SET TO 1 FOR
THE CALL TO QPSOL.
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12. EXAMPLE PROGRAM AND OUTPUT QPSOL/31
r
N c
S
~ 142 INTEGER In INCy Js JP1y Ly NMI, NUM
143 DOUBLE PRECISION S, XJ
- c
. 144 IF (JTHCOL .EQ. 0) 60 TO 100
. c
C SPECIAL CASE -- EXTRACT ONE COLUMN OF H.
c
145 L = JTHCOL
196 INC =N
- 147 DO 50 I = 1, JTHCOL
148 HX(I) = HESS(L)
149 ING = INC -1
150 L =L ¢ INC
151 50 CONTINUE
c
152 L SL-INC Y
153 NM = N - JTHCOL
K 154 JP1 = JTHCOL * 1
155 IF (Nt .GT. 0)
®  CALL COPYVC( NUM, HESS(L), NUM, 1, HX(JP1), NM, 1 )
156 RETURN
. ¢
- C NORMAL CASE.
c
157 100 L=0
; 158 00200 I =1, N
i 159 S = 0.0D%0
- 160 00 150 J = I, N
161 L=L*
. 162 S = S + HESS(LIX(J)
-: 163 15¢  CONTINUE
- 164 HX(1) = 8
165 200 CONTINUE
166 IF (N .LE. 1) RETURN
c
_. 167 L =0
- 168 N1t =N -1
169 DO 400 J = 1, Nt
- 170 XJ = XtJ)
m L =L+t
- 172 JP1 = g ¢
173 DO 350 I = JP1, N
174 L 2L
- 175 HX(I) = HX(I) ¢ HESS(L)#XJ
- 176 350  CONTINUE
- 177 400 CONTINUE
178 RETURN
. c
C END OF QPHES
- 179 END
l 180 SUBROUTINE QPHESS( N, NROWH, NCOLH, JTHCOL, HESS, X, HX )
181 INTEGER N> NROWH, NCOLW, JTHCOL
182 DOUBLE PRECISION  HESS(NROWH,NCOLH), HXIN), X(N)
< c
c
. C IN THIS VERSION OF QPHESS, THE CHOLESKY FACTOR OF M IS STORED IN
C THE LOWER HALF OF THE THO-DIMENSIONAL ARRAY WHESS. IN OTHER WORDS,
b‘ f Wz L% LUTRANSPOSE), MHERE L IS A LONER TRIANGULAR MATRIX STORED
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) QPSOL/32 12. EXAMPLE PROGRAM AND QUTPUT o
. -—
. s
- T
o € IN HESS(I,J), I .GE. J. PR
o c .t v,
i = -
' 183 INTEGER I, IBACK, J» JMAX, LROWH, NUM -~
: 184 INTEGER MINO
185 DOUBLE PRECISION S
c
186 IF (JTHCOL .EQ. 0) 60 YO 100
c
R C SPECIAL CASE -- WE NEED HX = L # (JTH ROM OF L). :
c —
: 187 NM = N - JTHCOL + 1
188 CALL ZEROVC( NUM, HX(JTHCOL)s NUM, 1 )
- 189 NM = JTHCOL
; 190 LROWH = NROWH®(NUM = 1) ¢ §
191 CALL COPYVC( NN, HESS(JTHCOL,1), LROWH, NROWM, NX, NUM, 1 )
o 192 60 TO 300 ]
o c T
€ NORMAL CASE. -
L c -

193 100 DO 200 I = 1, N
194 S = 0.0D+0 o
195 DO 150 J = I, N ]
196 S = $ + HESS(J,IX(J) L
" 197 150  CONTINUE r-‘
- 198 HX(I) = 8
i 199 200 CONTINUE -
. c ]
200 NRM =N I
o [ .
€ COMPUTE HX = L * HX.
e C -
- 201 300 IBACK = N .
o 202 DO 400 I = §, N
. 203 S = 0.0D+0
204 JMAX = MINOC NUM, IBACK ) »
205 00 350 J = 1, JMAX
206 S = $ * HESS(IBACK,J IHX(J)
207 350  CONTINUE
208 HX(IBACK) = S
209 IBACK = IBACK -
210 400 CONTINUE
Nl 21 RETURN
L. c
C END OF QPHESS o
o 212 END
213 SUBROUTINE QPHES6( N, NROWM, NCOLM, JTHCOL, HESS, X, HX )
214 INTEGER N, NROWH, NCOLH, JTHCOL
R 215 DOUBLE PRECISION  HESS(NROWHM), HX(N), X(N)
; c s
- c
C IN THIS VERSION OF QPHESS, THE CHOLESKY FACTOR OF M IS STORED IN
. C THE ONE-OIMENSIONAL ARRAY HESS. IN OTHER WORDS, 2
€ H =L * LOTRANSPOSE), WHERE L IS A LOWER TRIANGULAR MATRIX STORED e
C COMPACTLY BY COLUMNS IN HESS. NOTE THAT NROWH IS USED TO OEFINE -
C THE LENGTH OF MHESS, AND MUST BE AT LEAST Nw(N ¢ 1)/2. THE
C PARAMETER NCOLH IS NOT USED MERE, BUT IT SHOULD BE SET TO 1 FOR S
. C THE CALL TO QPSOL. w2
- c ]
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12. EXAMPLE PROGRAM AND OUTPUT QPSOL/33

.;-;
K c
216 INTEGER I, IBACK, INC, J» JHAX, L, NUR
217 INTEGER MINO
- 218 DOUBLE PRECISION S
- c
219 IF (JTHCOL .EQ. 0) 60 TO 100
c
C SPECIAL CASE -- NE NEED HX = L # (JTH ROM OF L).
c
220 MM = N - JTHCOL ¢ 1
221 CALL ZEROVC( NUM, HX(JTHCOL), NURt, 1 )
222 L = JTHCOL
, 223 IM =N
226 DO 50 I = 1, JTHCOL
: 225 HX(I) = HESS(L)
226 INC = INC -}
, 227 L z L+ INC
. 228 50 CONTINUE
| g c
229 NM = JTHCOL
230 60 TO 300
- ¢
€ NORMAL CASE.
- c
- 231 100L=0
. 232 D0 200 I x 1, N
. 233 S = 0.0D0%0
234 PO 150 J = I, N
235 L=L ¢
236 § = S * HESSILI*XLJ)
237 150  CONTINUE
. 238 RX(I) = 8
- 239 200 CONTINUE
c
] 260 MM =N
c
C COMPUTE HX = L ®» WX.
c
261 300 IBACK = N
242 00400 I = 1, N
243 s = 0.00%0
2604 L = IBACK
245 INN =N
v 246 JMAX = MINO( MR, IBACK }
247 DO 350 J = 1, JMAX
248 s T S ¢ HESS(LI*HX(J)
249 ING = INC - 1§
250 L = L ¢+ INC
" 251 350  CONTINUE
. 252 HX(IBACK) =
- 253 IBACK = IBACK - 1§
254 400 CONTINUE
258 RETURN
c
A C END OF QPHESS
256 (Y
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QPSOL/34 12. EXAMPLE PROGRAM AND OUTPUT
CVEC. ~ing
. -0.02 -0.20 -0.20 -0.20 -0.20 0.04 0.06 B
. ROWS OF A. -
I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 L
, 0.15 0.064 0.02 0.04 0.02 .01 0.03
- 0.03 0.05 0.08 0.02 0.06 0.01 0.00
. 0.02 0.0 .01 0.02 0.02 0.00 .00
- 0.02 0.03 0.00 0.00 0.01 0.00 0.00 Lo
. 0.70 0.75 0.80 0.75 0.80 0.97 .00 SRS
0.02 0.06 0.08 0.12 0.02 0.01 0.97 R
LOMER BOUNDS. .
-0.10D0-01 -0.10D 00 -0.10D-01 -0.400-01 -0.10D 00 -0.10D-01 -0.10D-01 S
-0.130 00 -0.10D 13 -0.100 13 -0.10D 13 -0.10D 13 -0.99D-01 -0,30D-02 Y
- UPPER BOUNDS. o
: 0.10D0-01 0.15D 00 0.30D-01 0.20D-01 0.50D-01 ©.10D 13 0.10D 13 Lo
" -0.130 00 -0.49D-02 -0.64D-02 -0.37D-02 -0.120-02 0.100 13 0.20D-02 Lo
. o
- INITIAL X. -
by -0.01 ~0.03 0.00 -0.01 -0.10 0.02 0.01 -
) MORKSPACE PROVIDED IS INC 500, W(  200). T
i TO SOLVE PROBLEM WE NEED INC  164), W( 161).
= ITN JDEL JADD STEP  COND T NUMINF SUMINF -
I 9 o 0 0.00D-01 1.83D 02 3 1.0380000-01 fa
1 U 13U 6.120-02 1.560 02 1  3.0000000-02
- 2 12U 6L 4.24D-02 5.30D O1 0 0.000000D-01 i~
b EXIT LP PHASE. INFORM = 0 IVER = 2 -3 ¢
5 =
: ITN JOEL JADD STEP NHESS OBJECTIVE NCOLZ NORM GFREE NORM ZT6 COND T COND ZHZ HESS MOD i
l o o o 0.00D-01 1 4.58000-02 0 2.410-01 0.000-01 5.30 Ot 1.0D 00 0.00D-01 3
] 9 5L 0 0.00D-01 2 4,.58000-02 1 4.67D-01 2.16D-01 6.0D Ot 1.0D 00 0.00D-01 e
E 1t 0 14L 1.330-01 3 6.1616D-02 0 4.44D-01 0.00D-01 6.0D O1 1.0D 00 ©.00D-0% Ce.
1 11U 0 0.00D-01 4 4.1616D-02 1 4.44D-01 9.46D-02 1.3D O $.00 00 0.00D-O1
o 2 0 ¢ 1.00D 00 5 3.93620-02 f  4.330-01 1.390-17 1.30 01 1.0D 00 O©.00D-01 o
2 3L 0 0.00D-01 6 3.93620-02 2  5.260-00 9.200-02 1.5D Ot 9.3D 00 0.00D-0% o
3 0 10U 4.150-01 7 3.7589D-02 1  5.180-01 1.190-02 5.70 01 1.0D 00 0.00D-01 Ceone
4 0 0 1.00D 00 8 3.7554D-02 1 5.180-01 3.47D-18 5.70 01 1.00 00 0.00D-0f -t
~ 4 4L 0 0.00D-01 9 3.7554D-02 2 5.770-0 5.010-02 5.30 01 4.20 00 0.00D-01
L 5 0 O 1.000 00 10 3.70320-02 2 S5.57M-01 8.59D-18 5.30 01 .20 00 0.00D-0%
R EXIT QP PHASE. INFORM = 0 ITER= §
D
» VARIABLE STATE VALUE LONER BOUND UPPER BOUND LAGR MULTIPLIER RESIDUAL
e VARBL 1 LL -0.10000000-01 <0.10000000-01 0.10000000-01 0.4700306 0.0000
L VARBL 2 FR -0.69864650-01 -0.1000000 0. 1500000 0.0000000 0.3014D-01
VARBL 3 FR  0.1825915D-01 -0.10000000-01  0.3000000D-01  0.0000000 0.1174D-01
VARBL ¢ FR -0.24260810-01 -0.4000000D-01  0.20000000-01  0.0000000 0.1574D-01
. VARBL 5 FR -0.6200564D-01 =-0.1000000 0.50000000-01  ©.0000000 0.37990-01
g VARBL 6 FR  0.1380544D-01 -0.10000000-01 NONE 0.1 "n0000 0.23810-01
5 VARBL 7 FR  0.4066496D-02 -0.1000000D-01 NONE 0.0000000 0.14070-01
)
—
. R
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12. EXAMPLE PROGRAM AND OUTPUT

g

TR I
e 4

l LINEAR

| . LNCON

o LNCON

o LNCON
, LNCON
- LNCON
.- LNCON
U LNCON

v

CONSTR

NOWVSUN -

EXIT LP PHASE.

IT™N JOEL JADD

. EXIT QP PHASE.

STATE

[3:]
FR
uL
FR
FR
LL
LL

o FINAL QP OBJECTIVE VALUE =

f“- NORKSPACE PROVIDED IS
) TO SOLVE PROBLEM ME NEED 1IN

INFORM = O

0.000-01
INFORM = 0

FINAL QP OBJECTIVE VALUE =

VALUE

-0.1300000

-0.5879898D0-02
-0.6400000D-02
-0.4537323D-02
~0.2915996D-02
-0.99200000-01
-0.30000000-02

EXIT QPSOL - OPTIMAL QP SOLUTION.

INC

STEP NHESS OBJECTIVE NCOLZ NORM GFREE NORM 276
3 3.70320-02 4

EXIT QPSOL - OPTIMAL QP SOLUTION.

500,
14),

ITER =

ITER =

LONER BOUND

-0.1300000

NONE

NONE

NONE

NONE
~0.99200000-01
-0.30000000-02

0.37031650-01

A RUN OF THE SAME EXAMPLE WITH A WARM START....

H(  200).
N( 161).
0

0.37031650-01

.......

5.570-01

UPPER BOUND LAGR MULTIPLIER

-0.1300000
~0.4900000D-02
~0.64000000-02
-0.37000000-02
~0.12000000-02
NONE
0.20000000-02

o0 '

8.650-16

PAF RTINS

QPSOL/35

RESIDUAL
~1.908183 0.41630-16 | -
0.0000000 0.97990-03 -
~0.3143604 0.8674D-18
0.0000000 6.83730-03 :
0.0000000 0.17160-02
1.954501 0.5551D-16 SR
1.971586 0.2711D-18 T

COND T COND ZHZ HNESS MOD
3.50 01 (.30 00 0.000-01

.A
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i e e

»

.
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